lunes, 13 de agosto de 2012

motores eléctricos de corriente continua

 

 

Introducción

Los motores eléctricos de corriente continua son el tema de base que se amplia en el siguiente trabajo, definiéndose en el mismo los temas de más relevancia para el caso de los motores eléctricos de corriente continua, como lo son: su definición, los tipos que existen, su utilidad, distintas partes que los componen, clasificación por excitación, la velocidad, la caja de bornes y otros mas.
Esta máquina de corriente continua es una de las más versátiles en la industria. Su fácil control de posición, par y velocidad la han convertido en una de las mejores opciones en aplicaciones de control y automatización de procesos. Pero con la llegada de la electrónica su uso ha disminuido en gran medida, pues los motores de corriente alterna, del tipo asíncrono, pueden ser controlados de igual forma a precios más accesibles para el consumidor medio de la industria. A pesar de esto los motores de corriente continua se siguen utilizando en muchas aplicaciones de potencia (trenes y tranvías) o de precisión (máquinas, micro motores, etc.)

Motor de corriente continua

Un motor eléctrico de Corriente Continua es esencialmente una máquina que convierte energía eléctrica en movimiento o trabajo mecánico, a través de medios electromagnéticos.
FUNDAMENTOS DE OPERACIÓN DE LOS MOTORES ELÉCTRICOS
En magnetismo se conoce la existencia de dos polos: polo norte (N) y polo sur (S), que son las regiones donde se concentran las líneas de fuerza de un imán. Un motor para funcionar se vale de las fuerzas de atracción y repulsión que existen entre los polos. De acuerdo con esto, todo motor tiene que estar formado con polos alternados entre el estator y el rotor, ya que los polos magnéticos iguales se repelen, y polos magnéticos diferentes se atraen, produciendo así el movimiento de rotación.
Monografias.com
Un motor eléctrico opera primordialmente en base a dos principios: El de inducción, descubierto por Michael Faraday en 1831; que señala, que si un conductor se mueve a través de un campo magnético o está situado en las proximidades de otro conductor por el que circula una corriente de intensidad variable, se induce una corriente eléctrica en el primer conductor. Y el principio que André Ampére observo en 1820, en el que establece: que si una corriente pasa a través de un conductor situado en el interior de un campo magnético, éste ejerce una fuerza mecánica o f.e.m. (fuerza electromotriz), sobre el conductor.
El movimiento giratorio de los motores de C.C. se basa en el empuje derivado de la repulsión y atracción entre polos magnéticos. Creando campos constantes convenientemente orientados en estator y rotor, se origina un par de fuerzas que obliga a que la armadura (también le llamamos así al rotor) gire buscando "como loca" la posición de equilibrio.

Monografias.com
Gracias a un juego de conexiones entre unos conductores estáticos, llamados escobillas, y las bobinas que lleva el rotor, los campos magnéticos que produce la armadura cambian a medida que ésta gira, para que el par de fuerzas que la mueve se mantenga siempre vivo.

Utilización de los motores de corriente directa [C.D.] o corriente continua [C.C.]

Se utilizan en casos en los que es importante el poder regular continuamente la velocidad del motor, además, se utilizan en aquellos casos en los que es imprescindible utilizar corriente directa, como es el caso de motores accionados por pilas o baterías. Este tipo de motores debe de tener en el rotor y el estator el mismo numero de polos y el mismo numero de carbones.
LOS MOTORES DE CORRIENTE DIRECTA PUEDEN SER DE TRES TIPOS:
  • SERIE
  • PARALELO
  • COMPOUND
MOTOR SERIE: es un tipo de motor eléctrico de corriente continua en el cual el devanado de campo (campo magnético principal) se conecta en serie con la armadura. Este devanado está hecho con un alambre grueso porque tendrá que soportar la corriente total de la armadura.
Debido a esto se produce un flujo magnético proporcional a la corriente de armadura (carga del motor). Cuando el motor tiene mucha carga, el campo de serie produce un campo magnético mucho mayor, lo cual permite un esfuerzo de torsión mucho mayor. Sin embargo, la velocidad de giro varía dependiendo del tipo de carga que se tenga (sin carga o con carga completa). Estos motores desarrollan un par de arranque muy elevado y pueden acelerar cargas pesadas rápidamente.

simbologia utilizados en electricidad



  
Veremos los símbolos utilizados para los distintos elementos que formarán parte
de un circuito electrónico. Si bien existen dos normas b ien definidas
 (Americana y Europea), para poder representar  gráficamente cualquier diseño
 electrónico, la mayoría de los  elementos poseen aplicación y simbología universal, 
de forma tal que sea reconocible por las  personas que deban trabajar con él.

Expondremos a continuación la forma de representación de los cables y conexiones:
 
                                                            
Para representar gráficamente a las resistencias se emplean dos símbolos. Junto al símbolo se suele indicar el valor (en Ohm) y la disipación de potencia máxima.
A los capacitores también se los suele representar con dos símbolos diferentes, según se trate de tipos con polarización fija (electrolíticos) o sin ella (cerámicos, poliéster, etc.). En el primer caso se indicará la polaridad en el símbolo. Además se anotará, junto al componente, el valor de la capacidad, así como la tensión máxima de trabajo.
Las bobinas o inductancias pueden ser de valor fijo o variable, con núcleo o sin él y casi siempre se suele colocar el valor en Henry.
Para simbolizar a los transformadores existen varias representaciones según el núcleo sea de hierro, ferrita o aire. El primario se dibuja generalmente a la iquierda mientras que el o los secundarios a la derecha.
Con respecto a los semiconductores, los diodos poseen un símbolo básico que representa al componente de juntura, luego añadiendo un cierto complemento gráfico, se representan los diferentes modelos que existen de este componente (Led, varicap, zener, etc.). Al lado del símbolo se puede escribir la matrícula o el código que identifica al elemento (1N4147 por ejemplo).
Los transistores son representados con diferentes símbolos según las diferentes familias (bipolares, FET, MOSFET). La flecha que siempre existe en uno de sus tres terminales indica el sentido de circulación de la corriente (inversa a la corriente de electrones) a través del mismo, identificando así los tipos NPN y PNP y FET o MOSFET del canal N o P. AL lado del símbolo se puede colocar la matrícula.
Los semiconductores "de disparo" poseen dos símbolos según se traten de elementos con una puerta o dos. El triac presenta una única simbolización al ser un elemento no polarizado.
Los interruptores, conmutadores, llaves rotativas, etc. son otros de los componentes empleados en la construcción de circuitos electrónicos y se representan de la siguiente manera:

En el relé se dibuja la posición de reposo del mismo (normal abierto o normal cerrado).
Es muy común hablar de "tierra" o "masa" para representar un punto común asociado generalmente al polo negativo de la tensión de alimentación, este elemento suele tener diferentes representaciones.
En realidad, son muchísimos los símbolos empleados para la construcción de una representación eléctrica o electrónica, compuertas, integrados lineales, parlantes, celdas solares, instrumentos o conectores son sólo algunos ejemplos de los elementos que nos faltan representar y que no son objeto de esta obra, sin embargo, a continuación brindamos algunos ejemplos con que se podrá encontrar. Destacamos el empleo de fuentes de alimentación DC (pila y batería), de parlantes (también llamados altavoces o bocinas), de motores, antenas, tubo de TV, micrófono, auricular y amplificador operacional.

normas de seguridad en el taller de elctricidad

1. El orden y la vigilancia dan seguridad al trabajo. Colabora en conseguirlo.
2. Corrige o dar aviso de las condiciones peligrosas e inseguras.
3. No uses máquinas o vehículos sin estar autorizado para ello.
4. Usa las herramientas apropiadas y cuida de su conservación. Al terminar el trabajo déjalas en el sitio adecuado.
5. Utiliza, en cada paso, las prendas de protección establecidas. Mantenlas en buen estado.
6. No quites sin autorización ninguna protección de seguridad o señal de peligro. Piensa siempre en los demás.
7. Todas las heridas requieren atención. Acude al servicio médico o botiquín
8. No gastes bromas en el trabajo. Si quieres que te respeten respeta a los demás
9. No improvises, sigue las instrucciones y cumple las normas. Si no las conoces, pregunta
10. Presta atención al trabajo que estás realizando. Atención a los minutos finales. La prisa es el mejor aliado del accidente.